2023年度 沖縄県

Kmkm

$$\begin{array}{rcl}
(12) & 5 \stackrel{?}{\Rightarrow} & = (-12) \times \frac{3}{4} \\
& = -9
\end{array}$$

$$(3) \quad 5 \stackrel{?}{:} = 7 + 10$$

$$= 17$$

$$(4) \quad 5 \stackrel{?}{=} = 2\sqrt{3} + 3\sqrt{3} \\ = 5\sqrt{3}$$

(5)
$$5 = 9a^2 \times (-2b)$$

= $-18a^2b$

(6)
$$5 = 15x + 64 - 12x + 44$$

= $3x + 104$

(1)
$$5x-6=2x+3$$

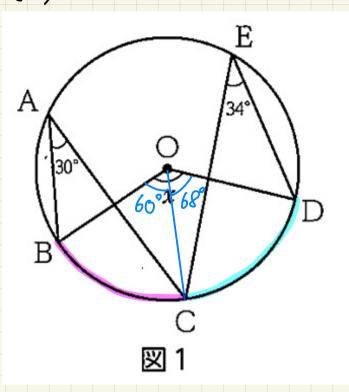
 $3x=9$
 $x=3$

(3)
$$5\vec{x} = x^2 - 9$$

(4)
$$5 = (x + 5)(x - 3)$$

(6)
$$\sqrt{5}^2 = 5$$
, $\sqrt{11}^2 = 11 \text{ f}$
 $\sqrt{5} < n < \sqrt{11} \iff 5 < n^2 < 11$
 $24 \text{ E} \text{ H} \text{ T= J} \text{ n } \text{ i} \text{ J}$
 $n = 3 \implies 3^2 = 9 \text{ f}$ $5 < 9 < 11$

(7)



BCに対する円周角と中心角 より とBOC=24BAC =60° BDに対する円間角と中心角 より 4DOC=24DEC =68° :4x=60°+68°=128°

(8) 1個 120円の Xロ=パ= 120×1.1 120 × (1+0.1) = 120×1.1 = 132円 : 小を3個買, たので: 132 × 3 = 396円 (9) ア: 平均値 = 0×1 + 1×3 + 2×3 + 3×5 + 4×7+5×2

 $= \frac{0 + 3 + 6 + 15 + 28 + 10}{20}$ $= \frac{3.1 \text{ [B]}}{20}$

イ: データ E 小 さい 順見 に並べると.
0 | 1 | 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
- 中央値 = 3+3 = 3 問

ウ:最頻值;最步頻度心高い值。7岁7516Kaym

表と箱ひけヨチリB

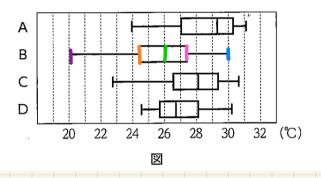
よって,値が最も大きいのは、ウ

[3]

10 |

ス が朝中ツョカツロ取向メベニ(し	表	那覇市の5月の日最高気温	(\mathcal{C})
-------------------	---	--------------	-----------------

	2019年	2020年	2021年	2022年
平均值	27.0	27.6	28.6	25.7
最大値	30.3	30.7	31.1	29.9
第3四分位数	28.1	29.4	30.3	27.4
中央値	26.7	28.1	29.3	26.0
第1四分位数	25.7	26.6	27.0	24.4
最小値	24.6	22.7	23.9	20.1



問2

問3

ア: 四分位範囲 = 第3四分位範囲 - 第1四分位範囲

2019年; 28.1 - 25、7=2、4°C

2020年: 29.4 - 26.6=2.8℃

2021年: 30.3 - 27.0 = 3.3°C

2022年: 27.4 - 24.4 = 3.0°C

2021年の四分位範囲が最も大きいので、誤り

介:5月のデータ教は31である。 上位下"一夕 下位于"一夕 少なくとも 25 ℃上人下 ──中央值 =26.0°C 第 | 団分位数 = 24.4°C 25℃上人下の日数が少なくとも8日間ある。 よって、25°C上人下の目数は7日上人上であり、正しい ウ: 2022年の最大値は29.9°Cなので 30°Cを超える日はない。よって誤り 工: 2019年では、平均値フ中央値。よって誤り 27.0°C 26.7°C 少人上了门答之1日イ [4] 問し2つのないころを投げたとき、出る目の場合の 教は6×6=36通り. よって、整数nit 36通りできる 問2 N355となるのは、さいこ3Aから外上, さいころBから上外上のときである。

問2 N≥55 となるのは、さいこ3Aから外上, さいこ3Bから外上のときである。 Aがちのとき ⇒Bは、5,6 ⇒ 2通り Aがらのとき ⇒Bは1~6 ⇒ 6通り よって、N≥55となる出方は、6+2= 日通り ゆえに、おめる在学は

$$\frac{\mathcal{E}}{3b} = \frac{2}{9}$$

問3.

n = 11, (2, 13, 14, 15, 16) (21), 22, 23, 24, 25, 26) (31, 32, 33, 34, 35, 36) (41, 42, 43, 44, 45, 46) (51), 52, 53, 54, 55, 56)(61, 62, 63, 64, 65, 66)

このうちろの倍数となるのは 12通り。よって、求める
石客率は、

$$\frac{12}{36} = \frac{1}{3}$$

[5] [5] |

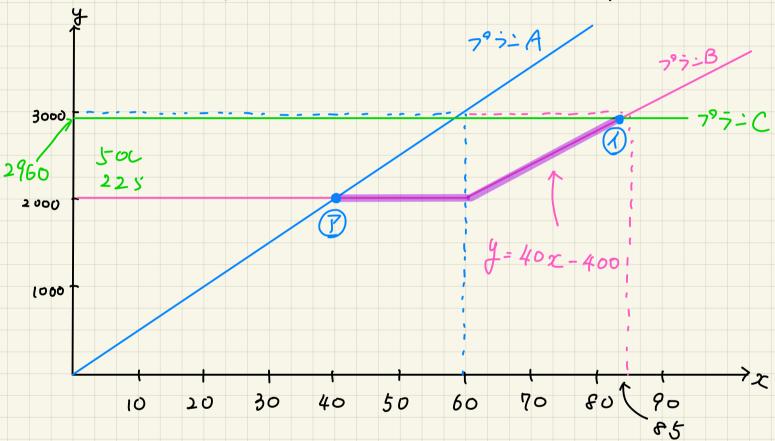
ファラニAでは、1分あたり50円かかるので、父分通言もしたときの電話使用料金4円は.

周 2

60分正超えた分は、1分あたり40円なので、 (80-60) x 40 = 800円 基本料金が2000円なので、電話使用料金は、 800+2000=2800円

問 3

つ°ラニA、B、Cのブラフは、上人下の通り



3つのグラフのうち、プラニBが一番下になっている時間を求める。

- ⑦ y=50x と y=2000の交点「5ので、連立方程式より 2000=50x => x=40

よ、て、f = 40x - 400 と f = 2960 の交点なるで、 2960 = 40x - 400 40x = 3360 x = 84 よ、て、7°ランB が最もすくなる 通話時間 ほ . 40分から84分までの間

連続する2つの偶数では、大き・個数の2乗からかでい、偶数の2乗をひいた数がどんな数になるの意間でる。

2,4 のとき 4²-2²=16-4=12 4,6 のとき 6²-4²=36-16=20 6,8 のとき 8²-6²=64-36=28 これらの結果から、連続する 2つの個数では、 大きい個数の2乗から小さい個数の2乗をひいた 数は、4の倍数とする。

問 2

れを整数とすると、連続する2つの偶数は、 2n、2n t 2 と表せる。大き、偶数の2乗れら小さい 偶数の2乗をひいた数は、

$$(2n + 2)^{2} - (2n)^{2}$$

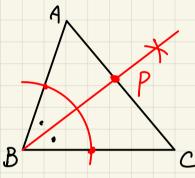
= $4n^{2} + 8n + 4 - 4n^{2}$

$$= 8n + 4$$

= 4 (2n+1)

2n+1 は整数だから、4(2n+1) は4a倍数である。 したがって連続する2つの偶数では、大きい偶数の2条から小さい偶数の2条をひいた数は、4の倍数とでる. (証明於小り)

LABP=1 LB より、LB a 二等分線を描けば良い.



[8] 問 [

関数よ=az2にかって、

$$x = -2 \quad \alpha \quad \xi = . \quad \dot{\beta} = \alpha \times (-2)^2 = 4a$$

$$x = |\alpha \rangle \xi = \dot{\beta} = \alpha \times |\alpha \rangle = a$$

よって、変化の割合が2であることから、

$$2 = \frac{4 \text{ a j j ho } \frac{1}{2}}{\text{ x a j j ho } \frac{1}{2}}$$
$$= \frac{a - 4a}{1 - (-2)}$$

$$\therefore Q = -2$$

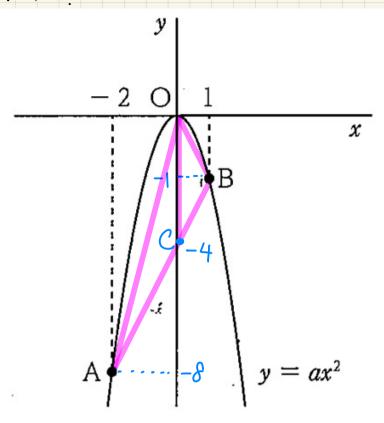
問2 点Aは其=-222上にあり、X=-2 なので、 $d = -2 \times (-2)^2$: A (-2,-8) = - 8 点月は、サニー2元上に本りな=1ほので・ $\mathcal{L} = -2 \times 1^2$ i. B(1,-2) 直線ABの式とよーmx+nとかくと、1-次関数では、 傾き=変化の割合なので. m = 子の項加量 又の項加量

 $=\frac{-2-(-8)}{1-(-2)}$

よって. y=2x+nで, B(1,-2) 走通るので $-2 = 2 \times | + n \Rightarrow n = -4$ したからて、直条早ABの式ほ

y = 2x - 4

問3

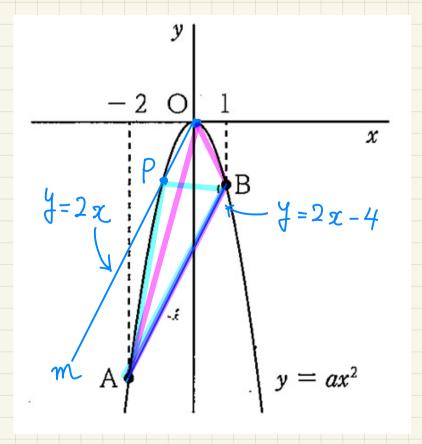


直線ABの当前片をCと
する。C(0,-4).

$$\triangle OAB & \triangle OAC & \triangle \triangle$$

OCBに分けて考える。
 $\triangle OAC = \frac{1}{2} \times 4 \times 2$
= 4
 $\triangle OCB = \frac{1}{2} \times 4 \times 1$
= 2

よって、△OABの面積 は、4+2=6 問4.



 $\triangle OAB$ と $\triangle PAB$ で,底辺EAB とすると,高さは等いので, 面積 t等い。 よって, Y = 2x と $Y = -2x^2$ の交点を求めれば良い。

$$\begin{cases}
y = 2x & -- 0 \\
y = -2x^2 & -- 0
\end{cases}$$

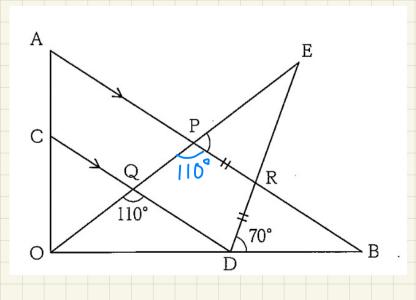
アノイナトコのまの

$$2x = -2x^2 \iff x^2 + x = 0$$

$$\therefore \quad \chi = 0, -1$$

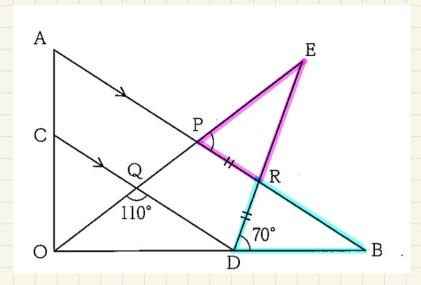
点Pは原点と異はるので、文座標は-1 点Pは4=2x上にあるので、

J,7,Pa座標は.(-1,-2)



AB//CDfリ、同位角や、 等し、aで、

周2

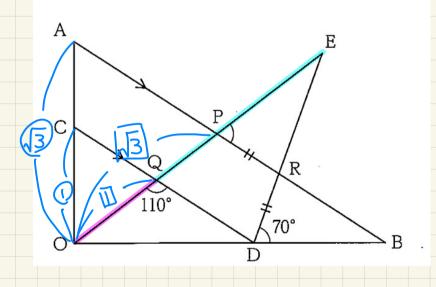


AREPとARBDにかいて、 仮定より RP=RD-の 対所は等しいので ムPRE= LDRB-②

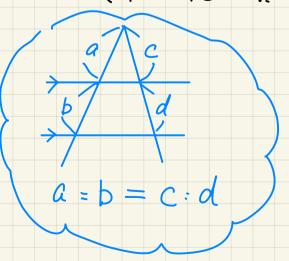
問 1 5 7 L EPR = 70°, 仮定 5 7 L BPR = 70° ほので、 LERR = LBDR — ③ の, ②, ③ 5 7 1組の近とその両端の角がそれぞれ

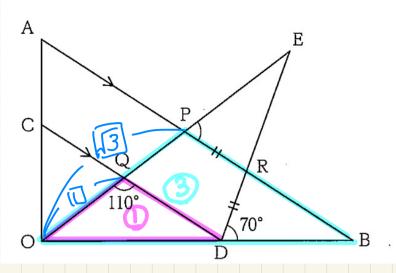
D, O, O o) MEE の上ででは「MIMM のFIではない 学しいので、AREP = ARBD (証明添り))

15 3



AB/(CDF') OA:OC = OE:OQ 5.7 $OE:QP = \sqrt{3}:L$





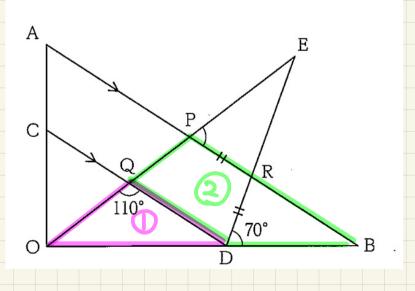
ムのQD と△OPBについて、QD//PBより同位角が等しいので、 20QD=20PB-① 20QD=20PB-① 20DQ=20BP-② の、②より2組の角が

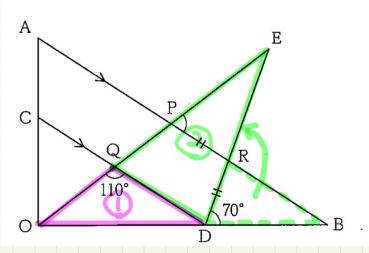
それぞれ等しいので、△〇QDの△〇PB、相似以は、〇Q:OP=1:√3 相似なる三角形の面積以は、相似以の2年に等しいので

 $\triangle OQD : \triangle OPB = 1^2 : \sqrt{3}^2 = 1 : 3$

5.2

△OQD:ロQDBP=1:2 問2より△REP=△RBDT3ので、面積は等し、





よって、ΔOQD: ΔQDE = 1:2 面積化

△OQDEOのGUEを外でれのQ,QEと すると、高さが等しいので、底辺以は面積以と 等しい、よって、

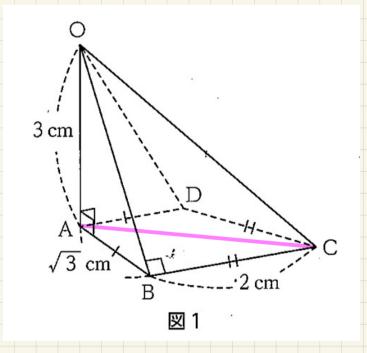
$$OQ:QE = \triangle OQD: \triangle QDE$$

$$= 1:2$$

$$0B = \sqrt{3^2 + \sqrt{3}^2} - \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}$$

$$= 2\sqrt{3} \text{ cm}$$

間 2



三平方の定理が成り立つ ためには、LABC=90° とほる災要がある。

よって正しい.

イ: LABC=90°よりACE直径と53円周上に 点Bがある。よって正しい ACE直径と53円周上に ウ:ABとCD,BCとDAは平行でないため. ロABCDは台形でない。

I: DABCEDADCETIC

仮定より

AB = AD - Q

BC = DC - 2

共通な辺は等しいから

AC = AC - 3

の、②、③ 5リ 3組の辺がそれぞれ等いので、

DABC = DADC.

対応は3角は等しいから

LADC = LABC = 90°

よって、点Dは、ACE直径とする円周上にある.

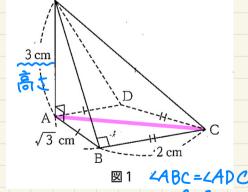
この円は、1と同一の円16ので、点Dは、3点A,B,C

走通る円周上にある。

小よより答えはウ

19 3

OABCD = AABC + AAD



$$= \frac{1}{2} \times \sqrt{3} \times 2 + \frac{1}{2} \times \sqrt{3} \times 2$$

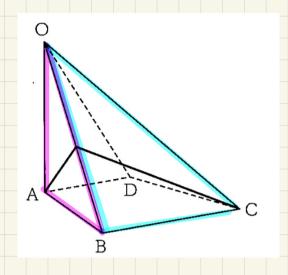
= $2\sqrt{3}$ cm

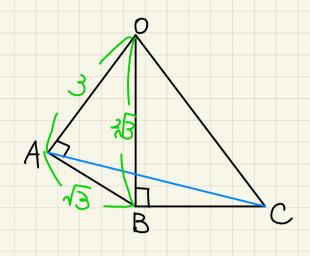
よって、四角すいOABCDの体積は.

 $2\sqrt{3} \times 3 \times \frac{7}{3} = 2\sqrt{3}$ cm³

周4.

ひもが通る側面の展開国を考える.





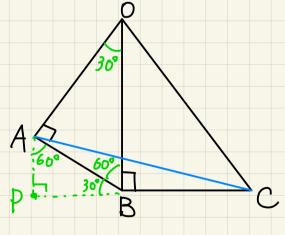
ひもが最大豆 ⇒ACが道線のとき、

:: 7. DOAB = 717

$$AB : Bo : AO = \sqrt{3} : 2\sqrt{3} : 3$$

= 3 : 6 : 3\sqrt{3} \) +3
= 1 : 2 : \sqrt{3}

よって. △ O ABIJ. 30°-60°-90° n 直門三角形である.



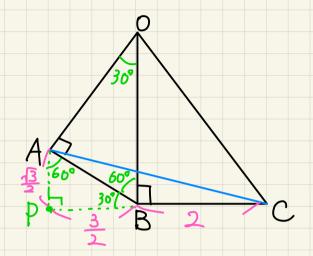
左国のように APB 走っくる。 LPBA = 90°- LABO = 90°-60° = 30° LPAB = 180°-90°-30° = 60°

よって、△APBは30°-60°-90°の直角三角形である。
: AP:AB:PB=1:2:√3

 $\sqrt{3}$ cm

$$AP : \sqrt{3} = 1:2 \Rightarrow 2AP = \sqrt{3} : AP = \frac{\sqrt{3}}{2}$$

$$\sqrt{3}$$
: $PB = 2:\sqrt{3} \Rightarrow 2PB = 3$: $PB = \frac{3}{2}$



$$PC = \frac{3}{2} + 2 = \frac{7}{2} cm$$

$$4 \lambda = APC 7 = 平方の定理 よ)$$

 $AC = \sqrt{(3)^2 + (7)^2}$

$$=\sqrt{\frac{3}{4}+\frac{49}{4}}$$

$$=\sqrt{\frac{52}{4}}$$

$$=\sqrt{\frac{52}{4}}$$
 $\times \sqrt{52} = 2\sqrt{13}$

$$=\frac{2\sqrt{3}}{2}$$

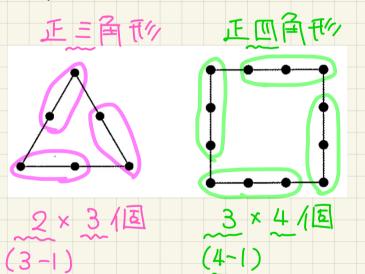
$$=\sqrt{13}$$
 cm

正三角形的著石的数 = 9個 = 3°個 正 四角形的著石的数 = 16個 = 4°個 \$ 5°, 正五角形的著石的数 5° = 25個

F 2

正n角形の碁石の数はn²個

問 3



正内角形分

(n-1) × n 1 国

よって、正の角形の夢石の牧が870個なので

$$n(n-1) = 870$$

 $n^{2} - n - 870 = 0$
 $(n+29)(n-30) = 0$
 $n = -29,30$

ハ > 0 年') n = 30. よって. 正三十角形

5, 7. 870 = 3×10×29